助理教授
智能医疗、AI基础理论、应用范畴论
我的研究方向是智能医疗、AI基础理论、应用范畴论,最终目标是实现由范畴论支撑的新医疗。
围绕智能医疗,我研究如下三个方向:
1. 中医辅助诊断系统: 根据临床数据统计,我们的系统在很多情况下已经能够给出和资深中医一样的处方。
2. 脉诊仪: 我们根据脉象信息,推断出患者的身体与精神状态,包括失眠、焦虑、胃胀、疲惫等。
3. 新药研发: 与靶点药的思路不同,我们将中医理论与范畴论结合,在大模型的帮助下寻找针对某类病证的复方药。
智能医疗的推进离不开数学。为了更好地构建辅助诊断系统,我接触到了范畴论。我发现它不仅可以用来分析与理解复杂系统,还可以用来刻画大模型的能力边界,设计新算法。因此,我对范畴论在人工智能中的应用也很感兴趣。
我博士毕业于美国康奈尔大学,师从Robert Kleinberg教授。博士毕业之后,我在MIT大数据基础研究院(MIFODS)做了一年博士后研究员。 我本科毕业于北京大学,出生于常州。
我今年有招博士生的计划, 但不招收中医AI方向的学生——除非你能背诵伤寒论,同时有极强的工程能力或代数能力。
我招收的主要方向为:基于范畴论/拓扑斯理论,设计新算法、提升模型数学/推理/编程能力。
欢迎感兴趣的同学们报名2025年叉院夏令营!
On the power of foundation models
Yang Yuan ICML 2023
《孟子·告子下》:有诸内,必形诸外。
《黄帝内经·灵枢·外揣》:司外揣内,司内揣外。
Contrastive learning is spectral clustering on similarity graph
Zhiquan Tan, Yifan Zhang, Jingqin Yang, Yang Yuan ICLR 2024
AI范畴论的一维情形。
Trade-off between efficiency and consistency for removal-based explanations
Yifan Zhang, Haowei He, Zhiquan Tan, Yang Yuan NeurIPS 2023
传统可解释性的不可能三角。
发表论文
CatCode: A Comprehensive Evaluation Framework for LLMs On the Mixture of Code and Text,
Zhenru Lin, Yiqun Yao, Yang Yuan,
COLM 2024.
Matrix Information Theory for Self-Supervised Learning,
Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan,
ICML 2024.
Information Flow in Self-Supervised Learning,
Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan, Yifan Zhang,
ICML 2024.
Contrastive Learning is Spectral Clustering on Similarity Graph,
Zhiquan Tan, Yifan Zhang, Jingqin Yang, Yang Yuan,
ICLR 2024.
Trade-off Between Efficiency and Consistency for Removal-based Explanations,
Yifan Zhang, Haowei He, Zhiquan Tan, Yang Yuan,
NeurIPS 2023.
Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression,
Jing Xu, Jiaye Teng, Yang Yuan, Andrew C. Yao,
NeurIPS 2023.
On the Power of Foundation Models,
Yang Yuan,
ICML 2023. [arxiv]
On Uni-Modal Feature Learning in Supervised Multi-Modal Learning,
Chenzhuang Du, Jiaye Teng, Tingle Li, Yichen Liu, Tianyuan Yuan, Yue Wang, Yang Yuan, Hang Zhao,
ICML 2023.
Finding Generalization Measures by Contrasting Signal and Noise,
Jiaye Teng, Bohang Zhang, Ruichen Li, Haowei He, Yequan Wang, Yan Tian, Yang Yuan,
ICML 2023.
Predictive Inference with Feature Conformal Prediction,
Jiaye Teng*, Chuan Wen*, Dinghuai Zhang*, Yoshua Bengio, Yang Gao, Yang Yuan,
ICLR 2023. [arxiv]
Towards Understanding Generalization via Decomposing Excess Risk Dynamics,
Jiaye Teng, Jianhao Ma, Yang Yuan,
ICLR 2022. [arxiv]
T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP,
Jiaye Teng, Zeren Tan, Yang Yuan,
ICML 2021. [arxiv]
A Stratified Approach to Robustness for Randomly Smoothed Classifiers,
Guang-He Lee, Yang Yuan, Shiyu Chang, Tommi S. Jaakkola,
NeurIPS 2019. [paper]
Learning-Based Low-Rank Approximations,
Piotr Indyk, Ali Vakilian, Yang Yuan, [α-β ordering]
NeurIPS 2019. [arxiv]
Asymmetric Valleys: Beyond Sharp and Flat Local Minima,
Haowei He, Gao Huang, Yang Yuan,
NeurIPS 2019 (spotlight). [arxiv]
Expanding Holographic Embeddings for Knowledge Completion,
Yexiang Xue, Yang Yuan, Zhitian Xu, Ashish Sabharwal,
NIPS 2018. [paper]
An Alternative View: When Does SGD Escape Local Minima?
Robert Kleinberg, Yuanzhi Li, Yang Yuan, [α-β ordering]
ICML 2018. [arxiv]
Hyperparameter Optimization: A Spectral Approach,
Elad Hazan, Adam Klivans, Yang Yuan, [α-β ordering]
ICLR 2018. Previously appeared in NIPS DLTP Workshop 2017 (oral) [arxiv] [github]
YATES: Rapid Prototyping for Traffic Engineering Systems,
Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster, Robert Kleinberg, Robert Soulé,
SOSR 2018. [paper]
Semi-Oblivious Traffic Engineering: The Road Not Taken,
Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, Robert Soulé,
NSDI 2018. [arxiv]
Convergence Analysis of Two-layer Neural Networks with ReLU Activation,
Yuanzhi Li, Yang Yuan, [α-β ordering]
NIPS 2017. [arxiv]
Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters,
Zeyuan Allen-Zhu*, Yang Yuan*, Karthik Sridharan, [* denotes equal contribution]
NIPS 2016. [arxiv]
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling,
Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, Yang Yuan, [α-β ordering]
ICML 2016. [arxiv]
Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives,
Zeyuan Allen-Zhu, Yang Yuan, [α-β ordering]
ICML 2016. [arxiv] [Code for SVRG++ and other VR algorithms in Scala]
Optimization Algorithms for Computational Geometry,
Zeyuan Allen-Zhu, Zhenyu Liao, Yang Yuan, [α-β ordering]
ICALP 2016. [arxiv]
Simultaneous Nearest Neighbor Search,
Piotr Indyk, Robert Kleinberg, Sepideh Mahabadi, Yang Yuan, [α-β ordering]
SoCG 2016. [arxiv]
Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms,
Wei Chen, Yajun Wang, Yang Yuan, Qinshi Wang
JMLR 2016. [arxiv]
Conference version:
Combinatorial Multi-Armed Bandit: General Framework, Results and Applications,
Wei Chen, Yajun Wang, Yang Yuan [α-β ordering]
ICML 2013. [pdf]
Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomposition,
Rong Ge, Furong Huang, Chi Jin, Yang Yuan, [α-β ordering]
COLT 2015. [arxiv]
Optimal Auctions vs. Anonymous Pricing,
Saeed Alaei, Jason Hartline, Rad Niazadeh, Emmanouil Pountourakis, Yang Yuan, [α-β ordering]
Games and Economic Behavior, Volume 118, November 2019, Pages 494-510.
Conference version: FOCS 2015. [arxiv]
Simple and Near-Optimal Mechanisms for Market Intermediation,
Rad Niazadeh, Yang Yuan, Robert Kleinberg,
WINE 2014. [arxiv]
On the Ratio of Revenue to Welfare in Single-Parameter Mechanism Design,
Robert Kleinberg, Yang Yuan, [α-β ordering]
EC 2013. [arxiv]
Boreas: An Accurate and Scalable Token-based Approach to Code Clone Detection,
Yang Yuan, Yao Guo,
ASE 2012. [pdf]
A Fast Parallel Branch and Bound Algorithm for Treewidth,
Yang Yuan,
ICTAI 2011. [pdf] [special thanks]
未发表论文
An empirical study on evaluation metrics of generative adversarial networks,
Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, Kilian Weinberger,
Manuscript 2018. [arxiv]
学生
博士生
何昊伟 (2019-2024,毕业后:中国电信)
滕佳烨 (2020-2024,毕业后:上海财经大学助理教授)
杨景钦 (2021-)
林真如 (2022-)
罗逸凡 (2024-)
徐康平 (与姚期智先生共同指导,2024-)
硕士生
张伊凡 (2021-)
张淑芯 (2019-2022,毕业后:北京大学读博)
博士后
李朝 (2021-2023,出站后:上海期智研究院)
教学
机器学习 (2019-2024年秋季学期)
类型安全的前后端系统实践 (2022-2024年暑期)
人工智能入门 (2019-2020秋季学期)
人工智能交叉项目 (2021年秋季学期)
人工智能研究实践 (2022年秋季学期)