PG电子游戏

袁洋

助理教授

智能医疗、AI基础理论、应用范畴论

我的研究方向是智能医疗、AI基础理论、应用范畴论,最终目标是实现由范畴论支撑的新医疗。

围绕智能医疗,我研究如下三个方向:

1. 中医辅助诊断系统: 根据临床数据统计,我们的系统在很多情况下已经能够给出和资深中医一样的处方。

2. 脉诊仪: 我们根据脉象信息,推断出患者的身体与精神状态,包括失眠、焦虑、胃胀、疲惫等。

3. 新药研发: 与靶点药的思路不同,我们将中医理论与范畴论结合,在大模型的帮助下寻找针对某类病证的复方药。

智能医疗的推进离不开数学。为了更好地构建辅助诊断系统,我接触到了范畴论。我发现它不仅可以用来分析与理解复杂系统,还可以用来刻画大模型的能力边界,设计新算法。因此,我对范畴论在人工智能中的应用也很感兴趣。

我博士毕业于美国康奈尔大学,师从Robert Kleinberg教授。博士毕业之后,我在MIT大数据基础研究院(MIFODS)做了一年博士后研究员。 我本科毕业于北京大学,出生于常州。

我的简历Google Scholar主页

我今年有招博士生的计划, 但不招收中医AI方向的学生——除非你能背诵伤寒论,同时有极强的工程能力或代数能力。

我招收的主要方向为:基于范畴论/拓扑斯理论,设计新算法、提升模型数学/推理/编程能力。

欢迎感兴趣的同学们报名2025年叉院夏令营!

代表工作

论文

发表论文

  • CatCode: A Comprehensive Evaluation Framework for LLMs On the Mixture of Code and Text,

    Zhenru Lin, Yiqun Yao, Yang Yuan,

    COLM 2024.

  • Matrix Information Theory for Self-Supervised Learning,

    Yifan Zhang, Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan,

    ICML 2024.

  • Information Flow in Self-Supervised Learning,

    Zhiquan Tan, Jingqin Yang, Weiran Huang, Yang Yuan, Yifan Zhang,

    ICML 2024.

  • Contrastive Learning is Spectral Clustering on Similarity Graph,

    Zhiquan Tan, Yifan Zhang, Jingqin Yang, Yang Yuan,

    ICLR 2024.

  • Trade-off Between Efficiency and Consistency for Removal-based Explanations,

    Yifan Zhang, Haowei He, Zhiquan Tan, Yang Yuan,

    NeurIPS 2023.

  • Towards Data-Algorithm Dependent Generalization: a Case Study on Overparameterized Linear Regression,

    Jing Xu, Jiaye Teng, Yang Yuan, Andrew C. Yao,

    NeurIPS 2023.

  • On the Power of Foundation Models,

    Yang Yuan,

    ICML 2023. [arxiv]

  • On Uni-Modal Feature Learning in Supervised Multi-Modal Learning,

    Chenzhuang Du, Jiaye Teng, Tingle Li, Yichen Liu, Tianyuan Yuan, Yue Wang, Yang Yuan, Hang Zhao,

    ICML 2023.

  • Finding Generalization Measures by Contrasting Signal and Noise,

    Jiaye Teng, Bohang Zhang, Ruichen Li, Haowei He, Yequan Wang, Yan Tian, Yang Yuan,

    ICML 2023.

  • Predictive Inference with Feature Conformal Prediction,

    Jiaye Teng*, Chuan Wen*, Dinghuai Zhang*, Yoshua Bengio, Yang Gao, Yang Yuan,

    ICLR 2023. [arxiv]

  • Towards Understanding Generalization via Decomposing Excess Risk Dynamics,

    Jiaye Teng, Jianhao Ma, Yang Yuan,

    ICLR 2022. [arxiv]

  • T-SCI: A Two-Stage Conformal Inference Algorithm with Guaranteed Coverage for Cox-MLP,

    Jiaye Teng, Zeren Tan, Yang Yuan,

    ICML 2021. [arxiv]

  • A Stratified Approach to Robustness for Randomly Smoothed Classifiers,

    Guang-He Lee, Yang Yuan, Shiyu Chang, Tommi S. Jaakkola,

    NeurIPS 2019. [paper]

  • Learning-Based Low-Rank Approximations,

    Piotr Indyk, Ali Vakilian, Yang Yuan, [α-β ordering]

    NeurIPS 2019. [arxiv]

  • Asymmetric Valleys: Beyond Sharp and Flat Local Minima,

    Haowei He, Gao Huang, Yang Yuan,

    NeurIPS 2019 (spotlight). [arxiv]

  • Expanding Holographic Embeddings for Knowledge Completion,

    Yexiang Xue, Yang Yuan, Zhitian Xu, Ashish Sabharwal,

    NIPS 2018. [paper]

  • An Alternative View: When Does SGD Escape Local Minima?

    Robert Kleinberg, Yuanzhi Li, Yang Yuan, [α-β ordering]

    ICML 2018. [arxiv]

  • Hyperparameter Optimization: A Spectral Approach,

    Elad Hazan, Adam Klivans, Yang Yuan, [α-β ordering]

    ICLR 2018. Previously appeared in NIPS DLTP Workshop 2017 (oral) [arxiv] [github]

  • YATES: Rapid Prototyping for Traffic Engineering Systems,

    Praveen Kumar, Chris Yu, Yang Yuan, Nate Foster, Robert Kleinberg, Robert Soulé,

    SOSR 2018. [paper]

  • Semi-Oblivious Traffic Engineering: The Road Not Taken,

    Praveen Kumar, Yang Yuan, Chris Yu, Nate Foster, Robert Kleinberg, Petr Lapukhov, Chiun Lin Lim, Robert Soulé,

    NSDI 2018. [arxiv]

  • Convergence Analysis of Two-layer Neural Networks with ReLU Activation,

    Yuanzhi Li, Yang Yuan, [α-β ordering]

    NIPS 2017. [arxiv]

  • Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters,

    Zeyuan Allen-Zhu*, Yang Yuan*, Karthik Sridharan, [* denotes equal contribution]

    NIPS 2016. [arxiv]

  • Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling,

    Zeyuan Allen-Zhu, Zheng Qu, Peter Richtárik, Yang Yuan, [α-β ordering]

    ICML 2016. [arxiv]

  • Improved SVRG for Non-Strongly-Convex or Sum-of-Non-Convex Objectives,

    Zeyuan Allen-Zhu, Yang Yuan, [α-β ordering]

    ICML 2016. [arxiv] [Code for SVRG++ and other VR algorithms in Scala]

  • Optimization Algorithms for Computational Geometry,

    Zeyuan Allen-Zhu, Zhenyu Liao, Yang Yuan, [α-β ordering]

    ICALP 2016. [arxiv]

  • Simultaneous Nearest Neighbor Search,

    Piotr Indyk, Robert Kleinberg, Sepideh Mahabadi, Yang Yuan, [α-β ordering]

    SoCG 2016. [arxiv]

  • Combinatorial Multi-Armed Bandit and Its Extension to Probabilistically Triggered Arms,

    Wei Chen, Yajun Wang, Yang Yuan, Qinshi Wang

    JMLR 2016. [arxiv]

    Conference version:

    Combinatorial Multi-Armed Bandit: General Framework, Results and Applications,

    Wei Chen, Yajun Wang, Yang Yuan [α-β ordering]

    ICML 2013. [pdf]

  • Escaping From Saddle Points – Online Stochastic Gradient for Tensor Decomposition,

    Rong Ge, Furong Huang, Chi Jin, Yang Yuan, [α-β ordering]

    COLT 2015. [arxiv]

  • Optimal Auctions vs. Anonymous Pricing,

    Saeed Alaei, Jason Hartline, Rad Niazadeh, Emmanouil Pountourakis, Yang Yuan, [α-β ordering]

    Games and Economic Behavior, Volume 118, November 2019, Pages 494-510.

    Conference version: FOCS 2015. [arxiv]

  • Simple and Near-Optimal Mechanisms for Market Intermediation,

    Rad Niazadeh, Yang Yuan, Robert Kleinberg,

    WINE 2014. [arxiv]

  • On the Ratio of Revenue to Welfare in Single-Parameter Mechanism Design,

    Robert Kleinberg, Yang Yuan, [α-β ordering]

    EC 2013. [arxiv]

  • Boreas: An Accurate and Scalable Token-based Approach to Code Clone Detection,

    Yang Yuan, Yao Guo,

    ASE 2012. [pdf]

  • A Fast Parallel Branch and Bound Algorithm for Treewidth,

    Yang Yuan,

    ICTAI 2011. [pdf] [special thanks]

  • 未发表论文

  • An empirical study on evaluation metrics of generative adversarial networks,

    Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, Kilian Weinberger,

    Manuscript 2018. [arxiv]

学生

学生

博士生

何昊伟 (2019-2024,毕业后:中国电信)

滕佳烨 (2020-2024,毕业后:上海财经大学助理教授)

杨景钦 (2021-)

林真如 (2022-)

罗逸凡 (2024-)

徐康平 (与姚期智先生共同指导,2024-)

硕士生

张伊凡 (2021-)

张淑芯 (2019-2022,毕业后:北京大学读博)

博士后

李朝 (2021-2023,出站后:上海期智研究院)

教学

机器学习 (2019-2024年秋季学期)

类型安全的前后端系统实践 (2022-2024年暑期)

人工智能入门 (2019-2020秋季学期)

人工智能交叉项目 (2021年秋季学期)

人工智能研究实践 (2022年秋季学期)

相关资讯

Email

Google Scholar

//scholar.google.com/citations?user=7o4wtKEAAAAJ&hl=zh-CN&oi=sra
TOP